3.10 If $\gamma \equiv \boldsymbol{w}^{\top} \boldsymbol{\beta} = \sum_{i=1}^{k} w_i \beta_i$, show that $\operatorname{Var}(\hat{\gamma})$, which is given by (3.33), can also be written as

$$\sum_{i=1}^{k} w_i^2 \operatorname{Var}(\hat{\beta}_i) + 2 \sum_{i=2}^{k} \sum_{j=1}^{i-1} w_i w_j \operatorname{Cov}(\hat{\beta}_i, \hat{\beta}_j).$$
 (3.68)

3.11 Using the data in the file **consumption.data**, construct the variables c_t , the logarithm of consumption, and y_t , the logarithm of income, and their first differences $\Delta c_t = c_t - c_{t-1}$ and $\Delta y_t = y_t - y_{t-1}$. Use these data to estimate the following model for the period 1953:1 to 1996:4:

$$\Delta c_t = \beta_1 + \beta_2 \Delta y_t + \beta_3 \Delta y_{t-1} + \beta_4 \Delta y_{t-2} + \beta_5 \Delta y_{t-3} + \beta_6 \Delta y_{t-4} + u_t.$$
 (3.69)

Let $\gamma = \sum_{i=2}^{6} \beta_i$. Calculate $\hat{\gamma}$ and its standard error in two different ways. One method should explicitly use the result (3.33), and the other should use a transformation of regression (3.69) which allows $\hat{\gamma}$ and its standard error to be read off directly from the regression output.

- *3.12 Starting from equation (3.42) and using the result proved in Exercise 3.9, but without using (3.43), prove that, if $E(u_t^2) = \sigma_0^2$ and $E(u_s u_t) = 0$ for all $s \neq t$, then $Var(\hat{u}_t) = (1 h_t)\sigma_0^2$. This is the result (3.44).
- **3.13** Use the result (3.44) to show that the MM estimator $\hat{\sigma}^2$ of (3.46) is consistent. You may assume that a LLN applies to the average in that equation.
- **3.14** Prove that $E(\hat{\boldsymbol{u}}^{\top}\hat{\boldsymbol{u}}) = (n-k)\sigma_0^2$. This is the result (3.48). The proof should make use of the fact that the trace of a product of matrices is invariant to cyclic permutations; see Section 2.6.
- **3.15** Consider two linear regressions, one restricted and the other unrestricted:

$$y = X\beta + u$$
, and $y = X\beta + Z\gamma + u$.

Show that, in the case of mutually orthogonal regressors, with $X^{\top}Z = \mathbf{O}$, the estimates of β from the two regressions are identical.

- **3.16** Suppose that you use the OLS estimates $\hat{\boldsymbol{\beta}}$, obtained by regressing the $n \times 1$ vector \boldsymbol{y} on the $n \times k$ matrix \boldsymbol{X} , to forecast the $n_* \times 1$ vector \boldsymbol{y}_* using the $n_* \times k$ matrix \boldsymbol{X}_* . Assuming that the error terms, both within the sample used to estimate the parameters $\boldsymbol{\beta}$ and outside the sample in the forecast period, are $\mathrm{IID}(0,\sigma^2)$, and that the model is correctly specified, what is the covariance matrix of the vector of forecast errors?
- **3.17** The class of estimators considered by the Gauss-Markov Theorem can be written as $\tilde{\beta} = Ay$, with AX = I. Show that this class of estimators is in fact identical to the class of MM estimators of the form

$$\tilde{\boldsymbol{\beta}} = (\boldsymbol{W}^{\top} \boldsymbol{X})^{-1} \boldsymbol{W}^{\top} \boldsymbol{y}, \tag{3.70}$$

where W is a matrix of exogenous variables such that $W^{\top}X$ is nonsingular.