- (e) $P_X y = X_2 \beta_2 + u$;
- (f) $M_1y = X_2\beta_2 + u$;
- (g) $M_1y = M_1X_2\beta_2 + u$;
- (h) $M_1y = X_1\beta_1 + M_1X_2\beta_2 + u$;
- (i) $M_1y = M_1X_1\beta_1 + M_1X_2\beta_2 + u$;
- (j) $P_X y = M_1 X_2 \beta_2 + u$.

Here P_1 projects orthogonally on to the span of X_1 , and $M_1 = \mathbf{I} - P_1$. For which of the above regressions are the estimates of β_2 the same as for the original regression? Why? For which are the residuals the same? Why?

2.17 Consider the linear regression

$$y = \beta_1 \iota + X_2 \beta_2 + u,$$

where ι is an n-vector of 1s, and X_2 is an $n \times (k-1)$ matrix of observations on the remaining regressors. Show, using the FWL Theorem, that the OLS estimators of β_1 and β_2 can be written as

$$\begin{bmatrix} \hat{\beta}_1 \\ \hat{\beta}_2 \end{bmatrix} = \begin{bmatrix} n & \boldsymbol{\iota}^{\top} \boldsymbol{X}_2 \\ \boldsymbol{0} & \boldsymbol{X}_2^{\top} \boldsymbol{M}_{\boldsymbol{\iota}} \boldsymbol{X}_2 \end{bmatrix}^{-1} \begin{bmatrix} \boldsymbol{\iota}^{\top} \boldsymbol{y} \\ \boldsymbol{X}_2^{\top} \boldsymbol{M}_{\boldsymbol{\iota}} \boldsymbol{y} \end{bmatrix},$$

where, as usual, M_{ι} is the matrix that takes deviations from the sample mean.

- **2.18** Using equations (2.35), show that $P_X P_1$ is an orthogonal projection matrix. That is, show that $P_X P_1$ is symmetric and idempotent.
- *2.19 Show that $P_X P_1 = P_{M_1X_2}$, where $P_{M_1X_2}$ is the projection on to the span of M_1X_2 . This can be done most easily by showing that any vector in $S(M_1X_2)$ is invariant under the action of $P_X P_1$, and that any vector orthogonal to this span is annihilated by $P_X P_1$.
- **2.20** Let ι be a vector of 1s, and let X be an $n \times 3$ matrix, with full rank, of which the first column is ι . What can you say about the matrix $M_{\iota}X$? What can you say about the matrix $P_{\iota}X$? What is $M_{\iota}M_{X}$ equal to? What is $P_{\iota}M_{X}$ equal to?
- **2.21** Express the four seasonal variables, s_i , i = 1, 2, 3, 4, defined in (2.46), as functions of the constant ι and the three variables s_i' , i = 1, 2, 3, defined in (2.49).
- **2.22** Show that the full n-dimensional space E^n is the span of the set of **unit basis** vectors e_t , t = 1, ..., n, where all the components of e_t are zero except for the t^{th} , which is equal to 1.
- **2.23** The file **tbrate.data** contains data for 1950:1 to 1996:4 for three series: r_t , the interest rate on 90-day treasury bills, π_t , the rate of inflation, and y_t , the logarithm of real GDP. For the period 1950:4 to 1996:4, run the regression

$$\Delta r_t = \beta_1 + \beta_2 \pi_{t-1} + \beta_3 \Delta y_{t-1} + \beta_4 \Delta r_{t-1} + \beta_5 \Delta r_{t-2} + u_t, \qquad (2.70)$$

where Δ is the **first-difference operator**, defined so that $\Delta r_t = r_t - r_{t-1}$. Plot the residuals and fitted values against time. Then regress the residuals on the fitted values and on a constant. What do you learn from this second