to be uncorrelated with y_i^* and u_i^* . Therefore, we run the regression

$$c_i = \beta_1 + \beta_2 y_i + u_i.$$

Under the plausible assumption that the true value β_{20} is positive, show that y_i is negatively correlated with u_i . Using this result, evaluate the plim of the OLS estimator $\hat{\beta}_2$, and show that this plim is less than β_{20} .

- 8.2 Consider the simple IV estimator (8.12), computed first with an $n \times k$ matrix \boldsymbol{W} of instrumental variables, and then with another $n \times k$ matrix $\boldsymbol{W}\boldsymbol{J}$, where \boldsymbol{J} is a $k \times k$ nonsingular matrix. Show that the two estimators coincide. Why does this fact show that (8.12) depends on \boldsymbol{W} only through the orthogonal projection matrix $\boldsymbol{P}_{\boldsymbol{W}}$?
- **8.3** Show that, if the matrix of instrumental variables W is $n \times k$, with the same dimensions as the matrix X of explanatory variables, then the generalized IV estimator (8.29) is identical to the simple IV estimator (8.12).
- 8.4 Show that minimizing the criterion function (8.30) with respect to β yields the generalized IV estimator (8.29).
- $\star 8.5$ Under the usual assumptions of this chapter, including (8.16), show that the plim of

$$\frac{1}{n}Q(\boldsymbol{\beta}_0, \boldsymbol{y}) = \frac{1}{n}(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}_0)^{\top} \boldsymbol{P}_{\boldsymbol{W}}(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}_0)$$

is zero if $y = X\beta_0 + u$. Under the same assumptions, along with the asymptotic identification condition that $S_{X^\top W}(S_{W^\top W})^{-1}S_{W^\top X}$ has full rank, show further that $\lim n^{-1}Q(\beta,y)$ is strictly positive for $\beta \neq \beta_0$.

- 8.6 Under assumption (8.16) and the asymptotic identification condition that $S_{X^\top W}(S_{W^\top W})^{-1}S_{W^\top X}$ has full rank, show that the GIV estimator $\hat{\beta}_{\text{IV}}$ is consistent by explicitly computing the probability limit of the estimator for a DGP such that $y = X\beta_0 + u$.
- 8.7 Suppose that you can apply a central limit theorem to the vector $n^{-1/2} \mathbf{W}^{\top} \mathbf{u}$, with the result that it is asymptotically multivariate normal, with mean $\mathbf{0}$ and covariance matrix (8.33). Use equation (8.32) to demonstrate explicitly that, if $\mathbf{y} = \mathbf{X} \boldsymbol{\beta}_0 + \mathbf{u}$, then $n^{1/2} (\hat{\boldsymbol{\beta}}_{\text{IV}} \boldsymbol{\beta}_0)$ is asymptotically normal with mean $\mathbf{0}$ and covariance matrix (8.17).
- 8.8 Suppose that W_1 and W_2 are, respectively, $n \times l_1$ and $n \times l_2$ matrices of instruments, and that W_2 consists of W_1 plus $l_2 l_1$ additional columns. Prove that the generalized IV estimator using W_2 is asymptotically more efficient than the generalized IV estimator using W_1 . To do this, you need to show that the matrix $(X^{\top}P_{W_1}X)^{-1} (X^{\top}P_{W_2}X)^{-1}$ is positive semidefinite. Hint: see Exercise 3.8.
- **8.9** Show that the simple IV estimator defined in (8.41) is unbiased when the data are generated by (8.40) with $\sigma_v = 0$. Interpret this result.
- **8.10** Use the DGP (8.40) to generate at least 1000 sets of simulated data for \boldsymbol{x} and \boldsymbol{y} with sample size n=10, using normally distributed error terms and parameter values $\sigma_u=\sigma_v=1,\ \pi_0=1,\ \beta_0=0,$ and $\rho=0.5.$ For the exogenous instrument \boldsymbol{w} , use independent drawings from the standard normal distribution, and then rescale \boldsymbol{w} so that $\boldsymbol{w}^{\mathsf{T}}\boldsymbol{w}$ is equal to n, rather than 1 as in Section 8.4.